On the connected-charges Thomson problem
نویسندگان
چکیده
منابع مشابه
Why charges go to the surface: a generalized Thomson problem
– We study a variant of the generalized Thomson problem in which n particles are confined to a neutral sphere and interacting by a 1/r potential. It is found that for γ ≤ 1 the electrostatic repulsion expels all the charges to the surface of the sphere. However for γ > 1 and n > nc(γ) occupation of the bulk becomes energetically favorable. It is curious to note that the Coulomb law lies exactly...
متن کاملModified Thomson problem.
The modified Thomson problem, which concerns an assembly of N particles mutually interacting through a Coulombic potential and subject to a Coulombic-harmonic confinement, is introduced. For sufficiently strong confinement strengths M, properties of its solutions (such as the energy and the particle positions at the minimum, and the corresponding zero-point vibrational energy) are accurately es...
متن کاملTopological Constraints on the Charge Distributions for the Thomson Problem
The method of Morse theory is used to analyze the distributions of unit charges interacting through a repulsive force and constrained to move on the surface of a sphere – the Thomson problem. We find that, due to topological reasons, the system may organize itself in the form of pentagonal structures. This gives a qualitative account for the interesting “pentagonal buttons” discovered in recent...
متن کاملCrystalline order on a sphere and the generalized Thomson problem.
We attack the generalized Thomson problem, i.e., determining the ground state energy and configuration of many particles interacting via an arbitrary repulsive pairwise potential on a sphere via a continuum mapping onto a universal long range interaction between angular disclination defects parametrized by the elastic (Young) modulus Y of the underlying lattice and the core energy E(core) of an...
متن کاملElectromagnetic instability of the Thomson Problem
– The classical Thomson problem of n charged particles confined to the surface of a sphere of radius a is analyzed within the Darwin approximation of electrodynamics. For n < nc(a) the ground state corresponds to a hexagonal Wigner crystal with a number of topological defects. However, if n > nc(a) the Wigner lattice is unstable with respect to small perturbations and the ground state becomes s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Europhysics Letters (EPL)
سال: 2006
ISSN: 0295-5075,1286-4854
DOI: 10.1209/epl/i2006-10146-1